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The phenomenon of the formation of a detonation jet is well known. However, this pro- 
cess is so complex that it will long be the subject of continued investigation. The present 
study is of a theoretical nature. The results reported here were obtained by a numerical 
method which may prove useful in the study of detonation phenomena. 

The first theories of the formation of a detonation jet were proposed by Lavrent'ev [I] 
and, independently, by Birghoff et al. [2]. This theory was later examined by several scien- 
tists and was augmented by new elements (allowance for the elastoplastic properties of the 
material, inverse detonation, etc.) [3-6]. The development of numerical methods opened up 
new possibilities for studying detonation processes. These methods can be used in an attempt 
to solve the general problem of a two-dimensional unsteady process. The first two-dimension- 
al calculations of a detonation process were performed in [7]. The study [8] offered an exam- 
ple of a calculation in which allowance is made for the effect of the propagation of the det- 
onation wave from an explosive on the lining of a shaped charge. Here, we performed numeri- 
cal experiments by an original method developed at the Institute of Plasma Physics and Laser 
Microsynthesis. 

Physical-Mathematical Formulation of the Problem. Figure 1 shows the general scheme of 
the shaped charge. The behavior of the explosive and the lining can be described by the fol- 
lowing system of equations [9, i0]: 
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where div w = (8u/ar) + (Sv/3r) + (u/z); u and v are projections of the velocity vector on 
the r and z axes, respectively; p is density; p is pressure; g is the internal energy; Sik 
are components of the deviatoric part of the stress tensor (Sik = 0 for the explosive). 
The equations of state for the copper lining [7] 

and the explosive [ii] 

- 1  2 
= 8 B P P {a+b[-77o ( - -~)2- - i l  }Pe+A( , ' -~o - - i )+  ( V - - I ) ,  

P = Cp 3 + D p e .  

We adopted the yon Mises c r i t e r i o n ,  with reduct ion  to a y i e l d  c i r c l e ,  to desc r ibe  p l a s t i c  flow 

2 2 (i) 
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(Y is the dynamic yield point). If condition (i) is violated, then the components Sik are 
multiplied by ((2Y/3)/2I. The fracture of the lining material was described in accordance 
with the conditions [12] 

6 = P/P0, 

t for 6 > 6 1 ,  

F (~) ~61--~2 f o r  

tO for  6 ~ 8 z, 

P = P(P, e )F (8 ) ,  Y = r o F ( 6 ) ,  ~ = ~0F(6). 

F o r  c o p p e r ,  61 = 0 . 9 5 ,  62 = 0 . 9 .  The i n i t i a l  c o n d i t i o n s  f o r  t h e  l i n i n g :  p = 0 ,  S i k  = 0 ,  
= 0 ,  u = 0 ,  v = 0 ,  p = P0, o r  u and  v a r e  a s s i g n e d  i n  t h e  e x a m p l e s  w i t h o u t  r e g a r d  f o r  t h e  

explosive. The detonation of the explosive was calculated by the method in [13], which pre- 
sumes that the form of the detonation wave and the parameters of the front are known and are 
equal to the parameters at the Jouguet point. A calculation was performed only for the det- 
onation products between the front of the detonation wave and the surface bounding the dis- 
persing detonation products. We took boundary conditions in the form p = 0 on all of the free 
surfaces, Sik = 0 on the free surfaces of the lining, and Un~ = Un2, o r = 0 on the explosive- 
lining contact surface (condition of free slip). 

Main Elements of the Numerical Method. There are currently many numerical methods avail- 
able for solving two-dimensional problems of mechanics. The method presented here is most 
similar to the "free particle" method [14]. At the initial moment of the calculation, we 
choose a certain number of fluid elements in accordance with the geometry of the object. In 
each element (point), we assign values to u, v, p, p, ~, and Sik in accordance with the ini- 
tial conditions. During the calculation, we follow the motion of these points and we calcu- 
late new values of pressure, velocity, etc. at them. The motion and the parameters of each 
element are determined on the basis of the state of the adjacent points. The adjacent points 
form an irregular local grid around each element. The grid is variable with respect to both 
space and time. The set of adjacent points should be based on the following assumptions: 
i) the adjacent points form the closest neighborhood around the given point; 2) the angular 
distribution of the adjacent points is uniform to the extent possible; 3) the number of ad- 
jacent points is greater than four. 

The principle on which the computational algorithm is based can be explained by taking 
the equation of motion as an example 

du i Op 
dt p Or ' 

f o r  w h i c h  we c a n  c o n s t r u c t  t h e  f o l l o w i n g  d i f f e r e n c e  s c h e m e :  

~q-1/2 n i " I n 
UL,  K ~ -  12L, K - -  - - ~  A t  ~ (pB)L,x; 

~3L, K 

lZL, K ~ U L , K - - / k ~ p  ) L , K  �9 

L,K 

( 2 )  

(3) 

Here, (L, K) is the number of the element; u n is the velocity of the element at the mo- L,K 
ment tn; UL,K n+1 is the velocity of the element at the moment tn+l; (PR)L,K n is the pressure 

gradient at the moment t n. The term u n will be discussed below. L,K 

Calculation of the gradient (PR)L,K n is particularly important. For the gradient, we 

assume that the points adjacent to the point (L, K) have the coordinates (ri, z i) and the 
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pressure Pi" By means of linear interpolation between the point (L, K) and the adjacent 
points, we reduce the latter to a circle around the point (L, K). Now the interpolation 
points take the coordinates (ri', zi') and the pressure Pi'" 

We assu~ae that the pressure in the neighborhood of the point (L, K) is described by the 
formula 

p(r ,  z) = Po + a(r - -  ~ )  q- b(z - -  zo), 

where r 0, z0, and P0 are the coordinates and pressure at the point (L, K). 
and b are calculated by the least squares method: 

N 
! r 2 (a, b) = E [P'i - -  P (r~, z~)] ; 

i = l  

o~ O, o~ 
0-s ~=0. 

The values of 

(4) 

(5) 
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We find a and b from Eqs. (5). Then 

(pR)L,~ = a. 

We s i m i l a r l y  c a l c u l a t e  a l l  t h e  o f  g r a d i e n t s ,  and t h e n  we c a l c u l a t e  VL,K n+l  p n + ~  ' L,K e t c .  
We t h u s  o b t a i n  new p a r a m e t e r s  f o r  a l l  o f  t h e  t h e o r e t i c a l  p o i n t s  a t  t h e  moment o f  t ime  t n+z.  
The e x p r e s s i o n  f o r  u n (3)  can be r e p r e s e n t e d  in  t h e  form L,K 

UL, K ~ UL, K ~ 

(a  = c o n s t  At,  ~n a r e  t h e  mean v e l o c i t i e s  o f  t h e  a d j a c e n t  p o i n t s ) .  The i n t r o d u c t i o n  o f  such  
an e x p r e s s i o n  i n t o  t h e  scheme means t h a t  we have  added t h e  n u m e r i c a l  e x t e r n a l  d i f f u s i o n ,  
which d a m p s n u m e r i c a l  o s c i l l a t i o n s .  

Sample C a l c u l a t i o n s .  F i g u r e  2 shows a sample  s o l u t i o n  o f  a p rob lem o f  c l a s s i c a l  d e t o n a -  
t i o n .  I t  i s  assumed t h a t  t h e  l i n i n g  has an i n i t i a l  v e l o c i t y  Vp which i s  d i r e c t e d  p e r p e n d i c u -  
l a r  t o  t he  s u r f a c e  o f  t h e  l i n i n g .  The d i v e r g e n c e  a n g l e  o f  t h e  l i n i n g  i s  120 ~ . A l s o  shown in 
F i g .  2 a r e  t h r e e - d i m e n s i o n a l  s k e t c h e s  o f  t h e  l i n i n g  a t  s e l e c t e d  moments o f  t ime  and t h e  d i s -  
t r i b u t i o n  o f  mean v e l o c i t y  U z a l o n g  t h e  z a x i s .  The mass and v e l o c i t y  o f  t h e  main ~ a r t  o f  t h e  
j e t  i s  c o n s i s t e n t  w i t h  t h e  hyd rodynamic  t h e o r y  o f  d e t o n a t i o n .  The h i g h  v e l o c i t y  o f  t h e  s m a l l  
mass which  forms t h e  f r o n t  p a r t  o f  t h e  j e t  f o l l o w s  f rom t h e  model  a s s u m p t i o n  t h a t  t h e  same 
velocity is specified along the r axis at all points at the initial moment of time (this in- 
cludes points near the axis as well). Such a situation leads to the creation of a strong 
pressure pulse at the initial moment, this pulse corresponding to ejection of the small mass 
at a high velocity. 

Figure 3 shows a similar example. The main difference is that the lining is spherical 
(Sik = 0). It is evident that the detonation process is different in character than in the 
previous example. First, almost concentric compression takes place. Then mass is ejected 
from the center. The velocity of the jet increases monotonically over time, while in the 
preceding example it reached its maximum value at the beginning of the process. The calcula- 
tions shown in Figs. 2-4 were the basis for constructing a complex numerical code in which we 
considered the effect of the explosive on the lining and the elastoplastic properties of the 
lining material. An example of such a solution is shown in Figs. 5-7. The divergence angle 
of the lining was made equal to 150 ~ to allow us to simultaneously study the feasibility of 
using the numerical code to describe the phenomenon of inverse detonation. 

Figure 5 shows the solution of a problem with so-called "sliding detonation." It was 
assumed here that the lining is accelerated by a pressure pulse with a prescribed space--time 
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profile. The pressure at the front of the pulse was ass~ed to be equal to the maxim~ value 
(Pmax = 0"5"1011Pa), while the detonation front moved at a velocity of 8 km/sec. It was also 
assumed that pressure behind the front fell in accordance with the formula 

i,l " p = P m a x z - - - ~  , / = 5  ~ro, ~ = t - - t  o 

( t  o i s  t h e  moment  o f  t i m e  a t  w h i c h  t h e  f r o n t  r e a c h e s  t h e  e l e m e n t  w i t h  t h e  r a d i u s  r 0 ) .  The 
i n i t i a l  f o r m  o f  t h e  l i n i n g  and  t h e  e x p l o s i v e  a r e  shown i n  F i g .  5 ,  w h i c h  a l s o  shows t h e  fo rm 
o f  t h e  d e t O n a t i o n  p r o d u c t s  and  t h e  l i n i n g  a t  t h e  moment o f  t i m e  22 ~ s e c .  T h i s  i s  t h e  moment 
a t  w h i c h  t h e  p r e s s u r e  o f  t h e  d e t o n a t i o n  p r o d u c t s  i s  no  g r e a t e r  t h a n  10 9 Pa a t  a n y  p o i n t .  
T h u s ,  we no  l o n g e r  n e e d  c o n s i d e r  t h e  e f f e c t  o f  t h e  d e t o n a t i o n  p r o d u c t s  on t h e  l i n i n g .  At  t h e  
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moment 26 ~sec (Fig. 6), the first significant rupture of the medium is already visible 
(P/P0 < 62 in the entire region denoted by the points). The rupture region separates that 
part of the mass moving outside the symmetry axis from the part converging on the axis. With 
allowance for the fact that the description of the rupture region is only theoretical in char- 
acter, we decided to divide the solution in two and will henceforth ignore that part of the 
shell which does not converge on the symmetry axis. 

Figure 7 shows the final phase of the solution. This phase is marked by the beginning 
of significant rupture of the central part of the lining and the formation of a shaped charge. 
We were unable to perform calculations for later phases of the process, since we saw nonphys- 
ical behavior of the medium in the ruptured regions (particularly when secondary compression 
of the ruptured regions began). 

Figure 7 also shows results of an experiment conducted by the shadow method (with an 
SNEF-4 camera) to evaluate this solution. The figure shows shadowgraphs (exposure to 40 nsec) 
of the already formed charge at the moments 770 and 900 Dsec. The measured velocity of the 
charge was equal to 1.8 km/sec. Despite the fact that the theoretical calculation represents 
a phase of still unsteady motion, it can be concluded that: i) satisfactory agreement is ob- 
tained between the theoretical and experimental charge velocities; 2) the graph of Vz(Z) 
shows that the length of the charge is also in agreement with the experiment; 3) analysis of 
the stresses, velocity, and rupture regions indicates that a small mass may separate from the 
leading part of the charge (this can be seen in the first experimental photograph); 4) the 
diameter of the charge is greater in the experiment than in the calculation. This may be 
due to theoretical assumptions made regarding the properties of the medium, as well as to the 
deformation of the charge during rupture of the medium. 
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